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Reliability Analysis of Phased Missions 

J. D. Esary and H. Ziehms 

Abstract.  In a phased mission the relevant system configuration 

(block diagram or fault tree) changes during consecutive time periods 

(phases). Many systems are required to perform phased missions. A 

classic example is a space vehicle. 

A reliability analysis for a phased mission encounters complexi- 

ties not present with just one phase, but can be transformed into an 

analysis of a synthetic single phase case. Ihe transformation has a 

potential for direct application, or can be used to study various com- 

putational algorithms and approximations. 

1.  Introduction. We consider a system which consists of several 

components. The components perform independently of each other, and 

each of them may be in one of two states, functioning  or failed.    It is 

assumed that no component can be repaired or replaced. Thus each com- 

ponent functions continuously in time until failure occurs, after which 

it remains failed.  Esary and Marshall [1964] say that a device which 

displays this kind of behavior has a life. 

The system performs a mission which can be divided into consecu- 

tive time periods, or phases.    During each phase it has to accomplish a 

specified task. Thus the system configuration (a subset of the compo- 
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nents and their functional organization which can be represented, for 

instance, by a block diagram or fault tree) changes from phase to phase. 

As is the case with individual components, only two states of the sys- 

tem are recognized, functioning or failed. 

A classic example of a phased mission is the voyage of a space ve- 

hicle, but many other systems are required to perform phased missions. 

To illustrate the ideas and methods of this paper we will often consid- 

er the following hypothetical situation. 

Example 1.1. A fire department has three vehicles; 

- a multipurpose fire engine (M), 

- a tanker (T), 

- a light fire truck (L) . 

The firefighting equipment of a small chemical factory located nearby 

consists of; 

- a sprinkler system (S), 

- a hydrant (H), 

- a special apparatus for fighting chemical fires (F). 

The plant safety engineer wonders whether the combined hardware re- 

sources of the fire department and the factory are sufficient to fight 

a fire in the factory. He consults the fire chief, and together they 

conclude; 

(1) During the initial stage of a fire either the multipurpose 

engine, which carries a small water supply, or the light truck, provid- 

ed the sprinkler system works, suffices to evacuate the building. 

(2) To contain the fire the factory's special apparatus is needed, 
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together with some auxiliary capability from the multipurpose engine or 

the light truck. Water can be supplied to the special apparatus and 

the department's units by the hydrant, or if it is out of order, by the 

tanker through pumps in the multipurpose engine. 

(3) After the fire has been contained it can be controlled either 

by the special apparatus or the multipurpose engine. Again, water can 

be supplied by the hydrant or by the tanker together with the multipur- 

pose engine. 

The system has six components and has to perform a three-phased 

mission. D 

Given the survival characteristics of the components, the relevant 

system configuration in each phase, and the duration of the phases, the 

problem is to find the probability that the system will function 

throughout the mission, i.e. the mission reliability for the system. 

The reliability analysis of a phased mission encounters some com- 

plexities which are not present when only one phase is considered.  It 

is not exact to do a standard analysis of each phase separately, and 

then multiply the resulting phase reliabilities together; even if the 

age of the components at the beginning of each phase is taken into 

account. The implicit assumption involved, that each component is 

functioning at the beginning of each phase, is not necessarily true. 

The following example illustrates this point. 

Example 1.2. A system with two independent components, C.  and 

C., is designed for a two-phased mission. In order for the system to 



perform the required tasks at least one component has to function 

through phase 1 and both components have to function through phase 2. 

The block diagram for this system is 

L- 

-ED-©- 

phase I phase 2 

«'or    k ■ 1,2»    let    ir        denote the probability that component   C 

functions through phase 1,  and    ir       denote the conditional probability 

that component    C.     functions through phase 2, given that it has func- 

tioned through phase 1.    The system reliability for phase 1 is 

''l " ^n + ^21 ~ ^ll'Sl'    an^ the systein reliability for phase 2, given 

that both components have functioned through phase 1,  is    ^ = *ioV7o' 

Multiplying these together would lead to the mission reliability 

" " V2 "   (ffll + n21 ' ,ril,r21)lI121T22- 

This is greater them the correct mission reliability, which is 

r 11 12 21 22 

since mission success is achieved if,  and only if,  both components 

function through both phases. 0 

The multi-phase case is potentially different from the single- 

phase case in another respect.    With just one phase,  if each component 

has a life and the system configuration is coherent   (represertable by a 
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block diagram or fault tree using AND and OR gates),  then the system 

has a life  (Esary and Marshall   [1964]).    In the multi-phase case this 

is not necessarily true.    Sven if all components have lives and all 

phase configurations are coherent,  the system may not have a life.    How 

this can happen is shown in the next example. 

Example 1.2.    A two-component system is designed for a two-phase 

mission with the phase configurations represented by the block diagram 

phase I phase 2 

If ir ., k = 1,2,    j * 1,2,    are defined as in Example 1.2, then there 

is a probability  (1 - ir
11 )

ir2i ^9 9 that  the system fails in phase 1, 

but functions again in phase 2.  In this sense the system does not have 

a life. 0 

The possible resurrection of a system in a later phase does not 

present a problem in the reliability analysis of phased missions. 

Since failure of the system in even one phase prevents mission success, 

it will always be assumed that the life of the system ends at the time 

of its first failure. By contrast, the possible resurrection of a com- 

ponent would pose a much more serious problem, and is ruled out by the 

assumption that all components have lives. 

The reliability analysis of phased missions has received attention 

in the  basic papers of Rubin [1964] and Weisberg and Schmidt [1S66]• 
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These authors introduced a method of "cut cancellation" which can be 

advantageously used to simplify the sequence of phase configurations 

prior to beginning reliability calculations. More recently, a similar 

approach is described in the United States Navy reliability manual 

NAVORD OF 29304 Revision A [1973], based on *-he work of C. Persels. 

The purpose of this paper is to exhibit a transformation which 

reduces any multi-phase mission to an equivalent, synthetic, single- 

phase system. Existing algorithms can then be applied to compute mis- 

sion reliability.  However, a concomitant apparent increase in the 

number of components may aggravate capacity problems.  The transforma- 

tion can also be used to study refined computational algorithms, and to 

derive bounds on mission reliability. Simple instances of its applica- 

tion are included. 

2. Mathematical formulation of 'the phased mission problem.  The 

system under consideration is assumed to have n components, labeled 

C.,...,C . Each component C.  has a life and hence its time to fail- 

ure,  or life length,  is a well defined, nonnegative random variable T . 

The assumption that the components perforn independently of each other 

formally means that T,.,...,T  are independent. 

For each component C.  and all times t ^ 0,  let x
k (t)  be a 

Bernoulli random variable defined by 

1 if component C.  functions at time t,  i.e. 

xk(t) =   if Tk > ^ 

0 otherwise. 



The random vari *ble X. (t)  is called a performance state indicator 

variable,  and the stochastic process (x. (t), t ^ 0) is the perform- 

ance process  of the component C. . The sample paths of the latter have 

the properties that: 

(2.1) 
a) X (t) » 0 •» X. (s) =0, s > t. 

b) x^Ct) = 1 •» xk(s) - 1, 0 *: s « t. 

Thus a sample path of a performance process is non-increasing and con- 

tinuous from the right,  f.z indicated in Figure 2.1. 

I 

X   (t)-l 
k 

X (t)=o 

T t—> 
k 

Figure 2.1.    Performance process sample path, component    C  . 

For each    t k 0,    let    X(t)   =   (X. (t),...,X   (t))     be the perform- 
•^      1       n 

ance state indicator vector  of the set, of components. Then the sto- 

chastic process (x^t), t ^ 0}  is called the joint performance process 

of  the components. 

The use of performance processes to represent component failure 

times is compatible with the use of structure functions to represent 

system configurations within phases. 
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The system configuration In each of the phases can be de-cribed 

by a block diagram or a fault tree for conceptual purposes,  or by a 

structure function for mathematical analysis.    A structure function is 

a binary function   t    of binary variables    x.,...,x     which relates the 

performance state of the system to the performance states of its ccmpo- 

nents;  with    ^(x) * <Hx.,...,x  )  a 1    if the system functions, and ^ x n 

^(x^) ■ 0   otherwise, where    x.   ■ 1    if component    C.     functions, and 

x.   ■ 0   otherwise. 

It is assumed that each phase configuration of a system is coher- 

ent,  i.e. can be represented by a block diagram or fault tree using AND 

and OR gates.    If a configuration is coherent,  then its structure func- 

tion    $    has the properties: 

a)    ♦(x)  i ${%)    whenever    xk ^ Yt.»    k = l,...,n. 

(2.2) b)     <M0)  - <H0,...,0)   = 0. 

c)    (Ml)  = *(1,...,1)   = 1. 

rill 
r\— 

phose  I 

r 
-IM I 

^ ITH 
1 "1 L\ \7\ 

1— 1TI- JM1 

i-E-E-i 

Bti=ÜJ 
phase 2 phase 3 

Figure 2.2.    Block diagram for the mission 
of Example 1.1. 



To illustrate, a block diagram for the mission described in Exam- 

ple 1.1 is shown in Figure 2.2,  and a fault tree in Figure 2.3. 

I 
no primary 

c*dlivery 

^ 

containment 
fails 

I 
no auxiliary 

delivery 
no water 

Figure 2.3.     Fault tree for the mission 
of Example 1.1. 



The structure functions for the system of Examnle 1.1 are; 

for phase 1, ♦]. " XM v XLXS' 

for phase 2,    ^ - XpUgO^ v \>  v XM
X
T)' 

for phase 3, ^ - xpxH v xM(xT v xH). 

The symbol v is the arithmetic OR operator, i.e. 

1    if    x.   * 1    or     *2 m 1» 
X     v  x     ■ 

1        2        0    if    x    ■ 0   and    x2 - 0, 

or for computational purposes,    x.  v x_ ■ x. + x_ - x
1
x2 

- 1 -   (1 - x1) (1 - x2). 

The phase structure functions can be combined with the: component 

performance processes to achieve a concise mathematical formulation of 

the phased mission problem. 

The mission is assumed to be divided into   m    phases, and to start 

at time    t ■ 0.    For    j ■ l,...,m,    the time at which phaae    j    ends, 

and,  except for    j = m,    the next phase begins is denoted by    t..    The 

structure function appropriate for phase    j    is denoted by    $..    The 

event that the system functions during phase    j    can be expressed as 

(♦. (X(t.))  = l},    and the event that the system functions throughout 
j ^   J 

the mission by    (♦, (XCt,))   « !,...,♦   {X{t )) ■ l}.    The mission relia- i *»»    1 m »^   m 

bility for the system is the probability that this event occurs.     Since 

4.(X(t.)),     j • l,...,m,    are Bernoulli random variables,  this proba- 
3 ^   3 

bility may be expressed compactly as 

(2.3)    p = p[Trj!1 v~ v*'13" E^'j=i v^V' 
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where    E    denotes expectation. 

The fact reflected in   (2.3)« that the sequential operation of 

phase configurations resembles to some extent the serial operation of 

subsystems,  is important in transforming the phased mission problem. 

3.    Transformation of a multi-phase mission into a single-phase 

mission.    Complexities in the reliability analysis of phased missions 

arise because a component's performance in each phase depends on its 

performance in previous phases.    The dependence, however,  is of a spe- 

cial type.    A component functions in phase    j    if,  and only if,  it has 

previously functioned in phase 1, and in phase 2,..., and in phase    j-1, 

and then functions in phase    j.    This sequence of requirements suggests 

that the performance of a component in phase    j    can be represented by 

a series-like structure whose elements represent its performance in 

phases    1,...,j. 

To be more specific,  suppose that component    C.     is replaced by 

phase    j    by a system of components    C. .,...,€,.,    performing independ- 

ently and in series.     In block diagram format,  the block 

is replaced in phase    j    by 

-EHSh-HSh 
In fault tree format,   the input event    C.     (failure of component    C.) 

is replaced in phase    j    by 

11 



Let   UVI'""UIH    k« independent performance state indicator vari- 

ables for the components    Cfcl'* "'ScV    witl1 

PlUkl ' 11 ' PlXk(tl) " 11 

(3.1) 
PlU)ci ' 1] ' P[Xk(ti) " 1lXk(ti-l)  " l1'    i ' 2'-**'j' 

Then    PlXk(t )  - 1] - Pl^!^*"0^ ' 11'    and S0 

st 
"klwlc2 kj' \(t.)  >a'""' U^^tL^.-.U,^, 

st where    =        means "is stochastically equal to" or,  less formally,   "has 

the same distribution as."    Thus the original component and the substi- 

tuted system have, as of the end of phase    j,    the same reliability. 

The preceding observations suggest that a transformation of the 

phased mission problem can be accomplished by: 

(a) Replacing, in the configuration for phase    j,    component    c. 

by a series system in which the components    C.,,...,C.. 

perform independently with the probabilities of functioning 

given in (3.1). 

(b) Considering the transformed phase configurations to be sub- 

systems which operate in series. 

The resulting new system, which has   (at most)    nxm    independent compo- 

12 



1 

nsnts, is the equivalent system. As will be shown later, the ordinary 

reliability of the equivalent system is the same as the reliability of 

the original system for its phased mission. 

Aa an illustration, the block diagram for the equivalent system 

arising out of Example 1.1 is shown in Figure 3.1 (cf. the block dia- 

gram for the phased mission shown in Figure 2.2). 

HEh lLi m 1 PI 
transformed 

configuration i 

r-^ 
H.U 

M, 

I -T —&H- 
transformed 

configuration Z 

-EHHHÜ1- —EHÜ-S- 

aM
2|^3>- 

.J 

transformed 
configuration 3 

Figure 3.1.    Equivalent system for the 
mission of Example 1.1. 
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In the equivalent system the m phase configurations which oper- 

ated in sequence become m subsystems which operate in series. How- 

ever, these subsystems usually have components in common (cf. Figure 

3.1), and do not function independently. Thus the product of the sub- 

system reliabilities is in general not equal to the system reliability, 

as Is illustrated by the following extension of Example 1.2. 

Example 3.1. For the mission described in Example 1.2, the equiv- 

alent system has the block diagram 

II 

'21 

subsystem I 

II 12 21 22 

subsystem 2 

Letting IT. .,  k = 1,2,  j = 1,2,  be as defined in Example 1.2, and 

p.. ■ ''vi' Py? ~ vv^v7'    ^ = ^'^' t^e subsystem reliabilities are 

V-  +  *- " ^11^21 = pll + p21 " P11P21' 11 21 

2 11 12  21  22       K12K22 

Their product    p = p.p      is,  except in trivial cases, less than the 

true system   -eliability   p = ir,,TT, „^„,1^,, = p,^p^,   which can be found 
' J    ^ 11  12 21  22 12  22 

by reducing th«   block diagram to  its simplest form 

II 12 i-ic
21 22 
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The true reliability for the equivalent system does agree with the 

reliability for the phased mission given in Example 1.2. D 

The transformed version of the phase    j    configuration functions 

if the event    {♦. (U(1)U(2) ...U(j)) - 1}    occurs, where 

Sl(i) - <uii V*  *"* H.<lVl) " lüiiüu-;"VW-   ^ equlv" 
alent system functions if the event {♦1(ü(1)) • 1, ^(U  H,  ) " l»«-- 

...» ♦ (U^^U^21 ...U(m)) - 1} occurs. The reliability of the equiva- 

lent system is 

p-^Tj:iV2a,a(2)--!i(1,>-» 
(3.2) 

,{l)t,(2)    (j) 

It remains to establish that the reliability of the equivalent 

system agrees with the mission reliability for the original system, i.e. 

that p as given by (3.2) agrees with p as given by (2.3). This is 

done by the following theorem and subsequent remarks. 

Theorem 3.1. Let X. ,...,X  be a non-increasing sequence of • i. m 

Bernoulli random variables,  i.e.    X,  ^ X. ^ ... ^ X .    Let    U. ,...,U 12 m x m 

be independent Bernoulli random variables with 

Pf«l - 11 - PtX1 - 11, 

PlU.  ■ 11 « PIX.  - llx.^ =11,     j « 2,...,m. 

Then    X.,...,Xm -
St U. .U.U,,...,U.U0...Ü  . i m i    i. z xim 

Proof.    It is only necessary to show for each non-increasing 
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binary sequence x, 2 x. fe ... ^ x , x. ■ 0 or 1, j • l,...,m, that 
x        4 in        j 

PIX. - x.,...^    » xl  - Ptu.  • x. »U.U. - X-,...,ü1U,...U    - x,,,). xx mm XXX2        2 xznin 

For the sequence    x, ■ 0, x. ■ 0,   ...,  x    ■ 0, 
x J n 

PCX.  - o,...^,,, - 01  » P[X.  - 0]  - PEU.  - 0] 
x n x x 

- Ptüj^ - O.U^ -  O,...,^^...^ - 01. 

For the sequence    x*l, x. »1,   ...,  x    - 1, x 2 n 

/ PIX,   -  1,...,X    » 11   - P[X     -   1|X     ,   »  11... 

...p[x2 - llXj^ » UPtXj^ = 11 

- P[u   - i]...prü- = llPEu.   = 1] n 2 x 

- P[ü.   - 1,0.0. =■ 1,...,U1Ü0...U    - 1]. X 12 1 2        m 

For any other sequence   x. ■ 1,  j ■ l,...,l,  x, ■ 0,  j ■ l+l,...,m, 

P[X1 = 1,...,XÄ = l**i+i = o,...,xm = 0] 

- p[xm » o,...,xi+1 = OJX^ = i,...,x1 - 11 

xp[x£ «= 1,...,X1 - 11 

* P[Xi+l " 0'XÄ " 11P[XÄ = 1'--"X1 - 11 
« 

- PfUj^x ■ OIPK^ = 1 ü1 " 11 

- P[V1 = l,...,UJl -  i'Ujt+i ■ OJ 

- PtUj^  =  IrU^ »  l,...^^...^ -  1,... 

...,u1...u£ujl+1 « o,...,u1u2...uin » oi. D 
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From  (2.1)  the sequence of variables   X. (t.),... ,X. (t ),    which in- 

dicate the performance of component    C.     at the end of each phase, is 

non-increasing.    Thus for   üi.i »• • •'U^    constructed according to (3.1), 

W'W VV  •8t ü)cl'üJclük2 üklük2"-ük«- 

Then,  since component failure times, and consequently component per- 

formance processes,  are independent, 

xo^xttj x(t ) .8t ü(1),ü(1)U(2) üa)üi2)...üin). 

Since the event "success in the phased mission" occurs if 

t. (X(t.))  "1,    j > l,...,m,    and the event "functioning of the equiv- 
j ^   j 

alent system" occurs if Mg £•••£) "1» j - l,...,m, then 

these two events are stochastically equivalent. Thus p as given by 

(2.3) agrees with    p    as given by  (3.2). 

4.    Sample applications of the transformation.    The transformation 

described in Section 3 provides, in principle,  a way to adapt existing 

programs for computing the reliability of single-phase systems to the 

computation of mission reliabilities for phased missions.    The neces- 

sary inputs axe the phase configurations and, phase by phase,  the con- 

ditional probabilities that the components survive the phase, given 

that they have survived the previous phases,   i.e.  the component condi- 

tional phase reliabilities 

(4.1) 

V) " PIXk(tj) * ^VVi' " 1]'   j" 2""'n' 
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k ■ If...fit.    From (3.1)  the conditional phase reliabilities are the 

reliabilities of the components in the equivalent system.    The program 

could be adapted to accomplish steps  (a)  and  (b)  of the transformation 

Internally, and then to find the reliability of the equivalent system. 

Direct implementation of the transformation could be frustrated by 

a large number of components in the equivalent system»  and in any case 

may not be the most efficient approach.    However,  the transformation 

may also be used to study refined computational algorithms, and bounds 

on mission reliaoility. 

For instance,  it is possible to study the tempting procedure of 

estimating mission reliability by computing the reliability of each 

phase configuration separately, and then multiplying the results to- 

gether.    There are at least two choices of component reliabilities to 

use in doing this;  the conditional phase reliabilities given in (4.1), 

or the component   (unconditional)  reliabilities through each phase 

(4.2) p,^ = P^VV   = 11 "   TTili \i'     3 - l....,m, 

k = l,...,n.    The first choice leads to estimating mission reliability 

by 

(4.3) * "   TTj*! lyir^,...,*^), 

and the second choice to estimating mission reliability by 

,4•4, " - Tr^ vu w 
where in both cases    h.,     j ■ l,...,m,    are the reliability functions 
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for the piase configurations.    The reliability function of a system 

with structure function    ^    is defined by 

Mp,,...,?J - PWX-,...,/ ) - 11 - E«KX1,...,Xri), in in in 

where X,,...,X      are independent Bernoulli random variables with 
l    n 

PtX^ - U • p. . k ■ l,...,n. 

The following remark shows that (4.3) gives an optimistic result 

(cf. Example 1.2)  and that  (4.4) gives a conservative result (cf. Exam- 

ple 3.1). 

Remark 4.1.    For    n    as given by (4.3),    p    as given by  (4.4), and 

p   as given by  (2.3) or   (3.2),    p & p & ir. 

Proof.    The coherent phase configurations have non-decreasing 

structure functions from  (2.2), and   U      ,...,U are independent by 

construction.    Thus 

<=iTj:1»j<sllV2,-2",)'^A*3<»<i'> 

-rrA^'s"1'' 
so that p S IT from (3.2) and (4.3). 

The proof that p & p uses standard properties of associated 

random variables (Barlow and Proschan [1975] , Chapter 2, or Esary, 

Proschan, and Walkup [1967]). Since U ., k * l,...,n,  j ■ l,...,m, 

are independent, and thus associated, and ^.,  j « l,...,m, are non- 

decreasing, then ♦. (U  U  ...U  ), j «= l,...,mf are associated. 

Therefore the inequality 
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<1).,<2)       „dl,  <.Tr »    .  „.(l),,")       „CJi TTA'V^V •••a(j,'"FAV2<,a ...u,J') 

holds,  so that    p * p    from   (4.4)  and  (3.2). D 

The transformation can provide a simple rationale for the cut can- 

cellation technique of Rubin, Weisberg, and Schmidt.    Conversely, cut 

cancellation can result in an advantageous simplification of the earli- 

er configurations of a phased mission, prior to any implementation of 

the transformation. 

For instance,   the sequence of phase configurations  in Example 1.2 

turned out ot have the mission reliability    p ■ P15P59'     The sequence 

of phase configurations 

-EH2- 
phase I phase 2 

has the sane mission reliability.     In Example  1.2  the only minimal cut 

set in phase 1,     {CwC-},     contains the phase  2 minimal cut sets,     {c.} 

and    {c }.    Thus    {C. ,C  }     can be  "cancelled"  in its phase,  leaving a 

configuration which can never fail. 

The minirai cut sets of a  (coherent)  phase configuration are the 

minimal   (in the sense of set inclusion)  combinations of components 

which by all  failing cause the configuration to fail.     The configura- 

tion can be viewed as a series combination of subconfigurations,  each 

of which consists of  the components in a minimal cut set acting in par- 

allel   (Barlow and Proschan   [1975],  Chapter 1,  or Birnbaum,  Esary,  and 
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Saunders   [1961]). 

The rule for cut cancellation is: 

A minimal cut set in a phase can be cancelled,  i.e. 

omitted from the list of minimal cut sets for tiat 

phase, if it contains a minimal cut set of a later phase. 

A slightly more typical illustration of how cut cancellation 

works is given in the following example. 

Example 4.1.    A mission has the phase configurations 

-m- 
phot« I phoM 2 

The minimal cut sets are:    in phase 1   {c.}  (C ,C } 

in phase 2   {c^      (C^C ) 

The phase 1 cut ^C »C } contains the phase 2 cut {C?},  and so can 

be cancelled in phase 1.  No cancellation results from the fact that 

the phase 2 cut {C »C.} contains the phase 1 cut {C }. 

After cancellation the sequence of phase configurations reduces to 

— c. 

phase I phase 2 
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It Is easy to verify that both sequences lead to the same mission 

reliability by comparing their equivalent systems. D 

The use of cut cancellation is justified by the following remark. 

Remark 4.2. Cut cancellation does not affect mission reliability. 

Proof. A formal proof of the remark could be given without invok- 

ing the transformation, but its use provides a way to visualize why ihe 

remark is true, and further, why cut cancellation is not a symmetric 

procedure. 

Simply note that a minimal cut set of the phase j configuration, 

consisting of the components, say C.,...,^., corresponds to a paral- 

lei and series array 

1— 
cu R 

— C2I 1 <w 

^1 ■V2 

-I'M 

SI u 
in the equivalent system.    This array acts in a series with the similar 

arrays corresponding to the other minimal cut sets,  whatever their 

phase of origin.    Then it is apparent that a minimal cut set, which 

contains a minimal cut set from a later phase, can be cancelled with no 

e:fect. D 

As a final illustration of the cut cancellation technique we can 
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